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Abstract - The shear-lig modelis applied to @ monolayer, unidirectional, fiber-reinforced composite
loaded n tension, The monolayer contains an infinite number of parallel tibers, with an arbitrary
number of them broken simultancously. While the tibers are modeled as lincar clastic, o lincar
viscoclastic constitutive law is assumed tor the matrix materiad, The time evolution of the overstress
profiles in the fibees and matrix near breaks is determned and the time dependence ot the eflective
Toad transfer length is caleulated. Exact closed-torm solutions as well as approsimate evaluations
ol the above quantities are given lor i power-Law creep comphance model, suititble for most cpoxy
thermosetting resins as matrix materials, These results dre abvo extended to the case of sequentsal
breaks in e and the case of an idealized indentation test.

L. INTRODUCTION

The shear-lag model for a unidirectional composite was developed by Hedgepeth (1961) as
an attempt to describe the stress ficlds near broken fibers, It is a simplified micromechanics
model for which closed-form solutions can be obtained. In Hedgepeth's analysis an array
of parallel. equally spaced fibers of infinite length, forming a monolayer is considered. The
monolayer includes un infinite number of fibers with a cluster of them broken (Fig. 1) and
is loaded by uniformly distributed tensile tractions in the direction of the tibers. Both fiber
and matrix materials are assumed to be linear clastic. The simplification introduced by the
shear-lag model is the decoupling between the mechanisms that respond to shear and
normal stresses in the composite. It is thus assumed that the fibers alone bear the normal
stresses along the fiber direction, while the matrix material acts only as a shear transfer
mechanism that overloads the adjacent fibers in tension whenever a fiber breaks.

The influence function technique was used for the solution of the above problem and
the explicit evaluation of the overlead coetlicients of the intact tibers due to fiber breaks
was given by Hedgepeth (1961). Closed-lform solutions in terms of Bessel and Weber
functions for the overload and displicement ficlds ot the fibers were reported by Fichter
(1969, 1970), who also looked into the problem of more than once group of breaks. A later
work by Hedgepeth and Van Dyke (1967) incorporated an clastic perfectly plastic model
for the matrix material. In a subscequent work Van Dyke and Hedgepeth (19069) assumed
that the matrix fails completely when a maximum shear stress is reached. A modified version
of Hedgepeth's shear-lag analysis was undertaken by Eringen and Kim (1974), who took
into account the normal stresses in the matrix transversely to the direction of the fibers.
Along the same lines was the analysis of Goree and Gross (1979) with the additional
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Fig. 1. A umdirectional composite with an infinite number of parallet tibers loaded in tension
uniformly, with (2¥ + 1) broken fibers along the Y-axis.

inclusion of longitudinal yielding and splitting of the matrix and later on an extension to
the three-dimensional case (Goree and Gross. 1980). Comparisons of the predictions of the
shear-lag model with three-dimensional finite element calculations were done by Reedy
(1984). He found excellent agreement between the two methods for the fiber stress con-
centrations in a Kevlar epoxy monolayer for load levels that do not cause matnix yielding.

In the present work we analyze the time response predicted by the shear-lag model of
a unidirectional. monolayer composite with an infinite number of parallel fibers loaded in
tension in the dircction of the fibers, by assuming a time-dependent constitutive model for
the matrix material, We take the matrix to be lincar viscoelastic, and as a special case we
investigate the consequences of a power-law, time-dependent, creep compliance on the time
evolution of the overstress profiles around broken fibers. Such a power-law creep compliance
is commonly used to model the time response of epoxy thermosctting resins, which are
often used as the matrix material for non-metallic composites (Pomeroy, 1978). A lincar
viscoelustic model for the matrix has previously been used by Lilshitz and Rotem (1970)
in their statistical theory of fatlure for composites, where Schapery’s approximate technigue
was used to obtain the time-dependent solution of a shear-lag model that lumped all broken
fibers into a single broken fiber.

in Scction 2 the formulation and the method of solution of the shear-lag problem is
presented Tor a unidirectional composite under tension with broken clastic fibers and
viscockistic matrix. In Section 3 the time evolution of overstress proliles in the intact fibers,
the shear stresses in the matrix and the effective load transter length are explicitly presented
for o matrix that has a power-law creep compliance. Approximate transform inversions
and some asymptotic results are given in Scction 4. A brief discussion of the case of
sequential breaks in time is pursued in Section 5. In Section 6 we apply the shear-lag model
to analyze the stress relaxation in an indentation experiment. In these experiments the
indentor imposes constant displacement boundary conditions on the broken fiber, while
the loads in the intact fibers relax with time as i result of the viscoelastic propertics of the
matrix.

2. FORMULATION OF THE SHEAR-LAG PROBLEM

The model of a unidirectional lamina is shown in Fig. |, where all fibers are identical
and parallel to the X-axis and have an cqual center-line spacing. The Lumina is considered
to be o two-dimensional infinite region with an infinite number of fibers, out of which
(2.V + 1) neighboring fibers are broken along the Y-axis. In a real case the size of the lamina
is finite. but the diameter of the fibers D, as well as the fiber spacing are small compared to
the length of the fibers. Both the Y- and Y-axes are axes of symmetry for the lamina in
terms of gcometry and loading and for this reason only onc quarter of the lamina is shown
in Fig. 1. The external loading is uniform tension applied in the direction of the fibers,
which are assumed to be the only tensile load bearing members. This is a justifiable
assumption for most polymeric matrix composites because the Young's modulus of the
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Fig. 2. Equilibrium in the X-direction of an infinitesimal element of the nth fiber with its surrounding
matrix.

matrix is usually one or more orders of magnitude less than the axial Young's modulus of
the fibers.

The mechanism of the shear-lag model is a highly idealized one. At zero time the fibers
are under constant tensile stress 4P, /nD* along the fiber direction and the matrix material
is assumed to be completely relaxed. At time T = 0%, (2N+ 1) fibers are broken causing
overloading of the intact fibers through shear stress in the matrix. The overload region
grows with time as a result of the viscoelastic properties of the matrix. We are interested in
calculuting the time evolution of the stress ficlds near the breaks in the fibers and the matrix.

A free body diagram, indicating equilibrium of forces in the X-direction. of an infini-
tesimal portion of the nth fiber together with its surrounding matrix is shown in Fig. 2
under the shear-lag approximation. By I, we denote the mean value of the normal stress
a vy along the fiber direction averaged over its cross-scetion, while T, and T, , , are the mean
vilues of the shear stresses oy in the matrix averaged over the effective thickness of the
famina 8. The cifective thickness is usually taken to be equal to the diameter of the fibers,
namely 8 = D. Detailed discussion on the sclection of Bis given by Reedy (1984). Following
his suggestion, we also tuke the shear transfer width H 1o be given by H = C—-nD/4, where
Cis the fiber spacing, so that the cross-section, A, of the fibers remains D */4. If we neglect
inertial forces, equilibrium of forees in the X-direction reduces to

Y

s,
ft‘.‘,r+8(rn,.—r,,)=o, vn. (1)
.

The above equations imply that the variation of the normal load P, = AZ, transfered along
a fiber is equilibrated by the difference in the shear stresses applied by the matrix on both
sides of the fiber. Note that X, is much larger than T, |, T, and the normal stresses in the
matrix, for a typical polymeric matrix composite. The derivative of Z, with respect to X,
however, is of the same order as the shear stress in the matrix, and this is what eqn (1)
implics. We have also neglected the derivative with respect to X of the mean value of the
normal stress o in the matrix because it is much smaller than both terms in egn (1), even
though the mean normal stress itself is of the same order as 7,.

Upon specifying constitutive relations for the matrix and fibers, the above set of equations
becomes a system of differential-difference equations for the determination of the dis-
placement ficlds U, of the cross-sections of the fibers along their axes, as functions of
position X and time T. In the present work we assume that the fibers arc lincar clastic,
namecly

U (X.T)

) = el 2
P,(X.T) = AE Y (2)

where £ is the axial Young's modulus of the fibers and U, the displacement in the X-
direction of the nth fiber. The matrix material is taken to be linear viscoelastic in shear,
that is
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where G(T) is the relaxation modulus and 7,(.X, T) the shear strain in the matrix and is
approximated by

Tn = ((-"n—L’,nfl) H. (4)

Equation (4) can also be obtained by neglecting the term ¢, (1}, ,+ 1) 2 in the work of
Eringen and Kim (1974). where V, is the displacement in the Y-direction of the nth fiber.
Substitution of eqn (4) into eqn (3) results in

L[ AUL(X.S) r U, (X.S) ]
g = - — —_ e e —_ —_ e . 5
T.(X.T) HH ‘, G(T=S) —" = dS J{G(T S) S ds (5)

We nondimensionalize the time variable by dividing T by some characteristic time 7,
of the matrix material, to be tound by creep experiments, so that ¢ = T/T,. We also define
a normalized relaxation modulus %(1) = G(tT,)/G,. where G, is the instantaneous elastic
shear modulus of the matrix material. (In this work lower case letters and seript letters
denote dimensionless quantities. while upper case letters stand for dimensional quantitics.)
Substitution of ¢cqns (2) and (§) into eyn (1), yiclds sccond-order differential-difterence
cquations for the determination ol U, namely

AEH 02U,

. p
(I'Llf ‘1‘\’-’ +J . ’//(’_‘3) (1‘: (L/nr | —2bn+ Un I) dS = 0‘ Vn. ((‘)

If the solution of eqn (6) is found, substitution of U, into eqn (5) will yicld the shear stress
in the matrix 7, and substitution into ¢qn (2) will yield the normal loads in the fibers. .\’
and U, are normalized so that the ficld equations and the boundary and inttial conditions
become independent of the material parameters. By defining v = N\ = X/ (AEH/G.B)
and w, (v 0 = UL(X, 7')/\/(1": HIG,AEB), egn (6) becomes

' ﬂ
Ty +J‘ GU=0) oy =2, 4w, ) dg =0, Vn (7
3 . o

The boundary conditions are given by

cu,
N =1, VYn, x= %, 1>0 (8a)
ov
Cu,
= 0, [nlg<N, x=0, >0 (8b)
Ox
i, =0, [n|>N, x=0. 1>0 (8¢)
while the initial conditions are
u,=x, ¥Yu, x=0, (=0. 9

To avoid unbounded displacement fields in the analysis, the transformation
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W, = ly,—X (10)

is introduced. which, after its substitution into eqns (7)-(9). results in the following ficld
equations, boundary and initial conditions:

('-.2"." ! . ¢ .
| =0 = O =24, ) dI =0, Vn (1
cNT s Cy
o,
~—=0, ¥Yn. x> x, t>0 (12a)
X
cw,
==, [nfgN, x=0. t>0 (12b)
cx
w, =0, >N, x=0, t>0 (12¢)
w, =0, VYn, x=20, =0 (13)

Notice that the field equations remain unchanged in form. The change in the boundary
conditions has altered the original problem into a new one. in which there are no loads at
infinity and there are only compressive loads applicd on the broken fibers suddenly at
1 = 0", which open up the breaks as £ grows.

The above equations can be solved by using the method of Laplace transform. If 4 (x)
and w, (v, 5) denote the Laplace transforms of @ (1) and w, (v, 1), respectively, the Laplace
transforms of ¢qns (11) and (12), upon using ¢gn (13), become

AN, (v 8)

P +3G(S)0, , (x8) = 28,0 )+, (x8)] =0, Vn (14
o, -
5. =0, Von, x—-x (15)
ox

O, |
yoo= o= [ <N, x=0 (16a)

cx ¥
W, =0, [n>N, x=0. (16b)

We have thus transformed the original viscoclastic problem into an elastic shear-liag problem
(correspondence principle, Christensen (1982)). We will follow here the methodology pre-
sented by Eringen and Kim (1974) and used also by Goree and Gross (1979) for the solution
of the clastic shear-lag problem, which is a dual integral equation technique. However, one
can ilso use the influence function technique developed by Hedgepeth (1961).

We can reduce eqn (14) to a single differential equation by introducing the finite cosine
transform (Churchill, 1972). i.c.

2y
I Y ai,cos (n), 0<fi<n (17a)
noon

"~

with the inversion formula given by
W, = f wcos (ng)ydo, nz=0 (17b)
4]
where W = W, s, 0), W, = w,(x.5). By summing eqns (14) with n running from — to

SAS 25:1-0
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x, after huving multiplied by cos(nf)). and by taking into account the symmetry
W, s) = ,(x.5). it is found that w satisfies

< "f' —35%(s) sin® (8/2)% = 0. (18)
a

The resulting simplification in the field equations has shifted the difficulty into the boundary
conditions. which turn out to be integra! equations. namely

Y0 xox (19)
cx
TOow 1
——cos(mhdil= —-, 0<ngN, x=0 (20a)
0 CX N
J weos (n)dd =0, N<n<x, x=0 (20b)
0

A solution to eqn (18) that satisfics boundary condition (19) is given by
o= f(s.0) exp [=2 sin (0/2)x/(+%(5))] 2n

for some f(s.0). Substitution of eqn (21) into eqns (20a) and (20b) yiclds the conditions

? |
J S (s ) sin (072) cos () d0 = 0<ngN (22a)
)

2.\'\,”(.\".7(.\‘)) )

J S(s.0)y cos (nh do =0, N<n<xw (22b)

for f(s.0). 11 we let

A
S0y = Y b, cos (ml)][2s /(s (s))]

o= U

conditions (22a) for the broken fibers reduce to

N a
Y b, J sin (0/2) cos (n0) cos ) d0 =1, 0<n<N (23)
0

ma Q)

while conditions (22b) for the intact fibers are satisfied identically. The complete satisfuction
of the boundary conditions reduces then to the solution of the algebraic system (23) of
(N+1) cquations, for the determination of the (N+1) unknown cocflicients b,
m=0.1.2..... N. The solution to the transformed problem is found by substituting #w from
cqn (21) into eqn (17b) and is given by the following expression:

A" h n -
w,(x.8) = Z " J‘ exp [—2 sin (()/2)\/(.«.6'(.\‘)).\'] cos (ml)) cos (nf)) do.  (24)

m=1 2.\'\/J(.\".//.‘(.\'))

The inversion of the Laplace transforms of w, will result in w,(x, 7). The difficulty of the
inversion will mainly depend on the selection of the constitutive model (i.c. %(s)) for the
viscoclistic matrix.

A clarifying remark regarding the number of broken fibers ts mentioned at this point.
We have assumed that the number of breaks is an odd integer, namely 2N+ 1), and as a
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consequence we have used the finite cosine transform (17), taking into account the symmetry
of (W, = w_,). Wecould easily model any number of breaks by using the finite exponential
transform (Churchill, 1972), which reduces to the finite cosine transform whenever
W, = Ww_,. The only change in the previous analysis is that f(s. ) is now given by

Z b/[25/ (s (5))] exp (~imf),

m=—-\

where the total number of breaks is (M + N+ 1) and the algebraic system (23) involves
(M + N+ 1) unknown coefficients b,,.

The important quantities in the analysis of shear-lag models are the overloads in the
fibers near breaks and the shear stresses in the matrix. The non-dimensional loads in the
fibers. defined by p,(x. 1) = P,(xX..tT,)/P, . can be found by substituting w,(x. 1) from eqn
(24) into eqn (2) upon using eqn (10). and they are given by

ow,(x. 0
—5—+
Cx

pa(x.t) = . n=20. (25)

The normalized shear stresses t,(x, 1) = T,(xX,, tTc)/\/(Pz, G./AEBH) between the aith and
the (n—1)th fibers are evaluated by substitution of w,(x, 1) into eqn (5) (which upon using
egqn (10) yiclds the normalization), and they are given by

' Wi — 1
£,(x.1) =J Ge—-0) T ) e s, (26)
]

o

Another uscful quantity, especially for statistical models of failure of composites
(Phocnix et al., 1988), is the effective load transfer length Ly, which for the present purposes
is defined as the distance from the breaks in the x-direction, within which the orerload
(py. 1 — 1) of the first unbroken fiber has dropped to zero. Since in the shear-lag model the
loud Py, of the first intact fiber actually descends to values below £ before it decays
exponentially to P, as x — oo, we define L; as the distance from the breaks at which Py,
crosses P,. In this case Ly or equivalently the normalized cffective load transfer length
L = L/ J(AEH]G B) must satisly the conditions

Own il )

(AN

Pyl =1 or 0. 27

In general /; will depend on time because py, |, depends on time. The so defined /; becomes
a characteristic length for the whole laminate for a given number of breaks 2N+ 1).

We summarize the results of this section by giving explicit evaluations for the quantities
of interest. The number of broken fibers (2V+ 1) is assumed to be known, while the
constants b, arc obtained by solving the lincar algebraic system of eqns (23). The fiber
cross-scction displacements, fiber axial loads and sheuar stresses in the matrix are then
calculated by using eqns (24)~(26), respectively. These equations acquire the following
cxplicit evaluations :

w(x.1) = '_)“_ ""',[ L Mexp [=2 sin (0/2)/(sG(s))x)/(2s/(s%(5))}

m=0 )

<cos (mf)) cos (n0)) d0 (28)

pa(x.t) =1— Z b, J.n L~ "{exp [—2 sin (0/2)/(s%(s))x]/s}

m=0

*sin (8/2) cos (m@) cos (n0) df  (29)
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N T _ -
(X)) = E_: b, f L 'lexp [—2sin (0.2)(56($))x]\ (59(s) 2s]
0
<cos (mthfcos (nth) —cos ((n— 1N} do (30)
where

e

- |- ~
fy=L"'[f(s)] = 5 lgl_.n) J exp (£5) f(s) ds. ¢t >0. (30

it

3. POWER-LAW CREEP COMPLIANCE MODEL FOR THE MATRIX MATERIAL

A model that describes closely the viscoelastic properties of commercially used matrix
materials (epoxy thermosetting resins) is a power-law creep compliance model, where the
creep compliance is given by

J(T)=JL.|:I+<7T>]=JC(I+1‘)EJC/(I). (32)

In the above J, denotes the instantancous clastic compliance in shear of the matrix material
and T, and 2 are material constants, 7, is the characteristic time required for the initial
displacement to be doubled, while the exponent x s usually much smaller than unity, The
limit x — 0 corresponds to the clastic case, while x — 1 gives the Maxwell viscoclastic modcel.
The connection between the reluxation modulus %(7) and the creep compliance 7 (1) is
expressed through the Laplace transformed quantitics (Christensen, 1982) by

G(s) () =1 (3hH

il G, = 1/J.. From ¢gns (32) and (33) the Laplace transform ol the relaxation modulus is
found to be
\‘1

.I/-‘ ) = :
NG (x) ST+ 1)

(34)

By inserting eyns (34) into ¢gns (28)-(30) it is possible to obtain explicit eviluations
for w,, p, and t, in terms of v and ¢ for different values of x. The inversion of the Laplace
transforms has been obtained by contour integration. We will only report here the solution
for the fiber loads and the shear stresses, while the displacement ficlds can be obtained by

integrating cqn (25). The fiber loads and the shear stresses are found to be
v k4
palx 0y =1~ Z h,, j h(x, 1,0) cos (m) cos (nty sin (0,2) d0 (33)
m o=t} 0
A .4
t,(x.1) = z h,, J g(x,1.0) cos (mil)[cos (nl) —cos ((n—1)))] d0 (36)
mw} 9

where the functions i(x. 1. 0) and g(.x, 1. 0) are given in Appendix A,

Numerical integration of the above formulac has been carried out for both p, and .
cven though they are related through egn (1). The reason for this is that p, is usually the
quantity of primary interest and the numerical evaluation of ¢, from p, involves differ-
entiation which should be avoided. Numerical integration has been done by using a midpoint
Romberg integration technique, with an appropriate change ol variables at the singular
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points of the integrands. The results are plotted in Figs 3-6. for one and three broken fibers
and for the first and second intact fibers for various times (x = 0.1 for all cases). The elastic
solution of Hedgepeth (1961) corresponds effectively to time ¢,.

From Figs 3 and 4 we notice that at x = 0 we recover the overload coefficients
(P(x=0.nP, =p,(x=0.1) in accordance with the elastic solution of Hedgepeth. The
overload coetlicient of the first intact fiber in a lamina with (2N + 1) neighboring breaks as
calculated by Hedgepeth is given by

.0 N<x. (37)

The above formula holds for the viscoelastic case as well because the overall static equi-
librium of the composite is not affected by the viscoelastic properties of the matrix material.
This is a consequence of the assumption that the matrix material cannot sustain normal
loads in the v-direction and there is no stress relaxation in the fibers as they are assumed
to be clastic. Therefore, the excess load caused by the simultancous breaks has to be
shared by the neighboring intact fibers and only the stress distributions are affected by the
viscoelastic properties of the matrix material.

Several observations can be drawn from Figs 3 and 4. The slope of the load distribution
in the fibers decreases in absolute value as time increases, resulting in a growth of
the cffective load transfer length /o with time (Figs 3(a) and 4(a)). The overload
[p.Cx. ) — 1] undershoots and actually becomes negative before it decays to zero as v —
tor the intact fibers. Global equilibrium of the composite in the x-direction implices that
N [pa(v.0) = 1] = 0, with summation extending to all fibers. Since the negative overloads

v

i the broken fibers grow with time as a result of the shear stress relaxation in the matrix,
the positive overloads in the intact fibers increase with time for fixed x, so that global
cquilibrium s satistied (Figs 3 and 4). This implics that the probability of ailure for the
intact fibers near breaks increases with time (Phoenix ¢f al., 1988). The length over which
this increased probability occurs also grows with time, this being the effective load transfer
length /.

The relaxation of the shear stress in the matrix can be seen in Figs S and 6. The shear-
lag model predicts that the maximum shear stress occurs at the break points (Figs 5(a) and
6(a)). Hois often believed, using symmetry arguments, that the shear stresses in the matrix
should approach zero at the fiber breaks, but as pointed out by others (Goree and Gross,
1980) these stresses need not approach zero at all. Nevertheless, the shear-lag model cannot
predict accurately the shear stresses in the immediate vicinity of the breaks. The main reason
i5 that high stress coneentrations due to the presence of the crack formed by the broken
fibers will lead to debonding and relative slip of points in the fiber -matrix interfuce. Note,
however, that since the fibers are much stiffer than the matrix (= 100), the region in which
the stresses are perturbed due to fiber breaks is 50 or more fiber diameters, while the shear-
lug analysts might fail o predict correctly the stresses in a small region of one or two fiber
diameters away from the breaks., Even though it is an approximate model, the shear-lag
model for the viscoclastic case unravels the trend in the time dependence of the stress ficlds
near broken fibers.

4. ASYMPTOTIC EXPANSIONS AND APPROXIMATIONS

The results of the previous section demonstrate the time evolution of the overload
zones and the shear stress relaxation. They cannot be readily used for engineering purposcs
though, because of the complicited form of the sotution. We can simplify the results by
inverting the Laplace transforms approximately. Approximate inversion techniques have
been employed by Schapery (1962) for viscoelastic stress analysis. Such an approximate
inversion is derived in Appendix B. Schapery (1967) found that accurate results can be
obtained using the approximation theory as long as « is small. which is the case in our
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overload vs distance from the break
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overload vs distance from the break
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shear stress vs distance from the break
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shear stress vs distance from the break
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study. [t has been found that whenever x < 0.1 the error in the overloads along the fibers
does not exceed 1%. Further comparisons with the exact inversion for various x will be
given later in this section. Notice that the approximate inversion of the Laplace transforms
appearing in eqns (28)-(30) by using eqn (B9) is equivalent to the substitution of the
approximate inverse Laplace transform of 4(s) into the elastic solution. namely G, is
replaced by G.%(¢) in the elastic solution, where %(7) is obtained from %(s) upon using eqn
(BY).

The ong time behavior of the solution for p,(x. 1) is obtained by applying Watson's
lemma (Carrier er «l.. 1966) to A(x.1.8) in eqn {35) and the asymptotic expansion of eqn
(35), valid for r — x . is given by

Pl )~ 1 = —di(M+d:An)E —d1(ME +d (M E —d (it (38)

where the functions d (n). d:(n). din). din). d«(n) depend only on the fiber under
consideration and & = /¢ is the similarity variable for large time. Explicit evaluations of
these functions are given in Appendix C. A similar result can also be obtained for the shear
stress in the matrix by applying Watson's lemma to g(x, t.6) in eqn (36). The interesting
point here is that the solution for the loads p, along the fibers is approximately self-similar
(the first four terms on the right-hand side of eqn (38)). The plot of p, vs { is approximately
a parabola for large values of time and small values of x {1 = o, = 0). For extremely
large times (2 = 0.1) and small x the solution becomes a straight line. Forx = 0 the overload
coctlicients for the clastic analysis arce recovered, namely P —d (1) = 4,3 for onc broken
fiber, ete. The time variable ¢ enters explicitly into the expression for p, if terms of order
t 7 are considered, but for & = O(1) the term d(m)Er * is negligible tor large ¢, and the
self=similar character of the solution is not destroyed. This is seen in Fig. 7, where the curves
tor the overload of the first unbroken fiber for times 74, £, and £, almost coincide when we
change the abscissa from v to &

The asymptotic result for the overloads of the intact fibers cun be used to determine
the time dependence of the effective toad transfer length as defined in Section 2. Upon using
cyn (38}, the condition py, (4. 1) = | gives
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Fig. 7. Load of the first intact fiber as a function of the similarity variable x.¢*° for times
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effective load transfer length vs time
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where z, is the first positive root of the polynomial in & on the right-hand side of eqn (38).
Note that eqn (38) with only quadratic terms in & cun be used to evaluate p, for small values
of & (& £ 0.5), otherwise substantial errors are introduced. Since /i/r* % is well above 0.5 for
most casces, it has been found necessiry to include at feast cubic terms in the expression
for p,. By neglecting the term o o(N+ 1)Er %, the effective load transter length becomes
proportional to £** as + - % with the proportionality constant depending only on « and
the number of breaks. The plot in Fig. 8, where /; is given for both the approximate and
the exact Laplace transform inversions, verifies that the power-law time dependence of [ is
a good approximation for large 1. As x decreases we have to go to higher values in ¢ in
order for the power-law to be valid. The curves in Fig. 8 have slope x/2 for large values of
time and for a given value of x there is a unique curve In (4) vs In (1), within a translation
along the vertical axis, independent of the number of breaks. For example, the cor-
responding curves for three broken fibers can be obtained by translating the curves of Fig.
8 (valid for onc break) in such a way that at the limit ¢ — 0 the curves predict the elastic /;
for three broken fibers.

The asymptotic behavior of p, given by cqn (38). which is obtained by using the
exact solution for p, given by eqn (35). is compared with the asymptotic behavior of the
approximate solution, which is obtained by using Schapery’s approximatc method of
Lapluace inversion (eqn (B9)) and is given by

A2 n
pa(x0) =1 - Z h,,,J cos (mfl) cos (nf)) sin (0/2) do
=) a
N 4
Y. b J’ cos (ml) cos (nf)) sin® (0/2) dO  (40)
0o

m=1

2exp (—72/2) x
Tl 7
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where + is Euler’s constant. Expansions (38) and (40) produce identical first-order terms if
exp (—7) = [[l-x2] "% 41

We indeed observe that exp (—3) = 0.56. while [[(1 —2)] ** ranges between 0.44 and
0.54. for 0.5 < x < 0.1. Schapery (1962) proposed the use of the value 0.5 instead of
exp (—3) in eqn (B9) because he found that it produces better results for most polymers.
In our numerical implementation we have used the value of [T'(1—%2)]" ** jnstead of
exp {—7) tor the computation of the effective load transfer length (approximate) reported
in Fig. 8. The maximum error in the effective load transfer length is 4.13% for x = 0.3,
while for smaller values of x the error is negligible (the approximate and the exact /; coincide
for x = 0.2 and 0.1 in Fig. §).

5. SEQUENTIAL FIBER-BREAKS

The solution technigue presented in Section 2 remains the same for the case when
pairwise fiber-breaks occur sequentially in time, triggered by some initial break in the Oth
fiber at time ¢,. The governing equations and boundary and initial conditions for this case
are egns () -(13) with the exception ol boundary conditions (12b) for the broken fibers,
which have to be modificd. Let 7, 0 < n < N, denote the time when fibers 1 and —# break,
Le. £, is the time of the inttial break and 7y the time when the final pair of fibers breaks,
The boundary conditions for the (2N + 1) broken fibers become

‘."'." = g = 1,) + (g~ gDV = 1) + (g7 =g ) (= 13)

[SAN

o gy gy D=0, x =0, 0N (4

where /1 is the Heaviside step function and the constant coctlicients ¢, 0 < mon < N, are
obtained using the normalized overloads predicted by the clastic solution. The superseript
moin ¢ denotes the number of broken pairs of fibers after time 1, {(m broken pairs
correspond to (2m + 1) broken fibers) and before the next pair of breuks occurs. For a fixed
m the values of ¢ are obtained from the relation ¢ = p(x = 0,0 — 1 as follows.

{2) When the index n corresponds to a broken fiber, namely 0 <n < p,(0.1) = 0,
whereby ¢ = — 1.

(by When the index # corresponds to o yet intact fiber, namely m < n € WV, p (0. 1) is
given by cqn {35), which coincides with the clastic solution of Hedgepeth (1961) ut x =0
(. 0.0) = 1 in eqn (35)). In particular, ¢l .y = p,,, (0.0 —1 =r,, — 1 as given by egn
(37). For cxample, consider the special case with an initial break at £ = ¢, and two subsequent
breaks at £, > £, so that the total number of broken pairs is N = 1. The values of ¢ are
gy = —1l.g} =13, g, = -1, ¢, = —1 (the value of ¢} can be obtained from egn (37), i.c.
Bl =pxv=0~1=xk,—1=4/3-1) and eqn (42) becomes dwy/dx = —H(1—1,).
cw o = V3N —1,) -4 3H(1—1,).

By taking the Laplace transform of eqn (42) and using cqn (24) to evaluate the left-
hand side of egn (42), a system of (V+1) algebraic equations results for the unknown
functions h*(s):

.
Y ConbB) = =g exp (= 108) + (g0 = qn) cxp (—1,5)+(g] —q.))

e 0

cexp (= 1a8)+ (gl —gn D exp (~1y8)). 0SSN (43

where ¢, are constants given by
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Com = J sin (8/2) cos (nf) cos (mf) df. 0 <n< N, (44)
0

Inthecase of ¢y = ¢, = --- =ty = 0. eqns (43) reduce to eqns (23) with 5% = b,,. since only
g, survive on the right-hand side of eqns (43) and their value is —1 for 0 < n < N (all
overloads in the cluster are negative after time ¢, as all .V fiber pairs have been broken).
The solution for the axial load in the fibers and the shear stress in the matrix is given by

N N
plx.)=1+3% % e [P H(E =t h(x t—ty.n.m) + (¢} —q?)H(1 —1,)

m=1 ;=0
hxct—t.nm)+ -+ (g —g¥ VH(— 1) =ty n.m)]  (45)

N v
= =3 Y g Hit=t)glx. 0=ty n.m) + (q! —q"VH(t — 1))

m=0 j=1)

glxct—tonm)+ o+ (g8 —q)  DYHE—=t)G(x t—tonom)]  (46)
where the functions £ and ¢ are defined by

n

,;(.\'.I—I,.II. m) = J- h(x, t—1,,0) cos (mf)) cos (nf)) sin (0/2) d 47
O

L4

glx. =1, n.m) = f glx,t—t,.0) cos (mO)[cos (nt)) —cos ((n—~1))] d0 (48)

i

where Ai(x, ¢, 0) and g(x, 1. 0) are given in Appendix A for the power-law creep compliance
modcl.

Even though the above solution is different from the case of simultancous breaks for
tme 1 = ry, the large time behavior (¢ > £y) is the same as if all breaks had occurred
simultancously, To sce this assume that ¢, 0 < m < N, are all of O(1) and cxamine the
behuvior of eqns (47) and (48) as ¢ — a5, As can be shown by considering the asymptotic
expansion of the solution for the liber loads (eyqns (38)), h(x, 1=t n,myand h(x, 1 — 1, n.m)
differ-from cach other by terms of O[(¢,—1,)/t" ** 7] for 0 < i.j < n. Similar arguments hold
tor g(x, 1 — 1, n,m) as well. Neglecting these terms, eqns (45) and (46) reduce to

N N
pa(x.y =1+ Z Y oentgth(x e onm), 1= w (49)
m=) 40
hi h
Lv)==Y Y e'q¥glx.onmy, - w. (50)
mal) 1«0}
N
Noting that Z Cw'qY = —b,,. we recover the results for the simultancous breaks given by

t=)
egqns (35) and (36). This implies that small delays in the breaking of fibers will not affect
the overload profiles of the intact fibers after a large time has clapsed (fading memory
matrix material).

6. THE SHEAR-LAG FORMULATION FOR RELAXATION EXPERIMENTS

The shear-lag problem has been formulated primarily to explain the way in which the
intact fibers arc overloaded whenever breaks occur. The boundary conditions thercfore are
dictated by the fact that broken fibers cannot carry any load. A different phenomenon takes
place. however, when a relaxation experiment is performed. A possible model for such an
experiment (to be also called an indentation experiment) for a unidirectional composite is
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to assume that there are no tensile tractions in one end (i.e. P, = 0 at X' — x), while the
fibers on the other end are clumped (i.e. U, = 0 at X' = 0). except for a number of them on
which non-zero displacements are imposed.

If we assume for the time being that P, is not zero, the only difference from the
formulation of Section 2 is boundary conditions (8b). which now become

w, =u, = U, (P, HGAEB). |nj<N. x=0. (>0 (51)

Going exactly through the same steps as in the first section we end up having to solve an
algebraic system for the determination of the unknown coefficients a,, of the form

‘
Y d

=

cos (m@) cos (Y dd =u!. 0<n <N (52)
The results for the axial fiber loads are
v

pa(x ) =1=2 a, | L Ulexp [=2sin (072) J(sG()x] (5G(5))/s)

me=

+sin (0;2) cos (mf)) cos (nf)) A0 (53)

and for the power-law creep compliance model introduced in Section 3 they are given by

¥
ooty =1-4 Z a,, g(x. 1. 0) sin (0/2) cos (mt)) cos (nf)) d¢ (54)

a
n- A0 0

where g(v, 7, 0) is given in Appendix A, The load p, is plotted in Fig. 9, for the case of one

overload relaxation
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Fig. 9(a). Load of the displaced fiber for various times.
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overload relaxation
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Fig. 9(b). Load of the fiber next to the displaced fiber for various times.,

indented fiber with u)y = 10, for the displaced and its adjacent fibers (x = 0.1). The overload
relaxation in the intact fiber is evident as the indented fiber relaxes its compressive load
with increasing time. The asymptotic expansion of eqn (54) as £ — 0 is given by

R l N n
pax ) = 1 =2[0(1=4/2)] '(FA+2)] "° R d,, cos (mb) cos (n6) sin (0/2) dO
m =} 0
sin (xn) x Y * .
+4- o Y a. | cos (m0)cos (n0) sin® (0/2) df). (55)
ma 0

Note that for x = 0 the third term on the right-hand side of eqn (55) vanishes and the load
in the fibers relaxes as ¢ * 2.

If the applied P, is zero, then a different nondimensionalization scheme is necessary
for u, and p,. By selecting the imposed U as a reference length, eqn (51) is replaced by

u,=u =UNUS, Inf<N, x=0, (>0 (56)

while the load p, is given by eqn (54) if p, is replaced by (p.+1). and with the following
normalization for the load :

pn = P,JULJ(G.AEBJH). (57)

The result is then eqn (54) or eqn (55) with unity omitted and a,, obtained by solving eqn
(52). The curves for p, vs x look like those in Figs 9(a) and (b). except that the p,-axis is
shifted vertically so that the zcro of the new axis corresponds to one of the old axis. Since
there is only one indented fiber in Figs 9(a) and (b), the displacement of that fiber U) at
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x = 0 does not enter into the results of Figs 9(a) and (b), as 1t 15 used for the non-
dimensionalization scheme.

7. CONCLUSIONS

The viscoelastic constitutive behavior in shear of the matrix material has the following
implications in the time behavior of the stress ficlds near breaks in a unidirectional composite
under tension.

(1) The overload region in the intact fibers grows with time and it grows in a self-
similar way for large times.

(2) The effective load transfer length grows as ¢*° for large times, where x is the
exponent of time in the power-law creep compliance function for the matrix.

(3) The applied loads in an indentation experiment relax like + * -~ for large times.
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APPENDIX A

For the inversion of the Laplace transforms reported inegns (29) and (30) a contour has been selected around
zero and the negative real axis on the complex plain, Contour integration vickds the functions f(x, 0.0 and

gl o8y, which are given by
" e ; "j(',‘ o (P57 fsin [ () sin (57| T wa
exp (-~ 1r) exp --u/.\/ ¥ cos 5 ‘ sin o2 o sn ) | - (Al
o t e S\ LY L fra—e
iy et = — s j” CXp (~1fr} exp ] ‘/.\_,! p cos 5 | sin .;. v sin 5

-

1
v,y = | - ‘
m

.

The quantitics 4, g and ¢ have the following evaluations:
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4= 2sin (0 x (AY)

p = [ cos (xn)+ Tx+ D] + [ sin (xm))°) (Ad)
7 sin (x)

=tn '| -—r—n———|. O<p<nr A3

@ an [r’ cos(zn)+r11+l)] b= (A3

APPENDIX B

Suppose we want to find the function @(2). if its Laplace transform G(s) is known. namely we have to solve
the integral equation

~»

p(8) =J exp (=smo(n) dn. (BI)

I we tahe the Ath derivative of eqn (BI) with respect to v and evaluate it at s = (K +¢) 1, we get the following
result

d“ i
dy

. A+ N
== J 7 exp l:—— ,A,L"”Q]tp(!]) dyy. (B2)
sath sod e (1]

By making the change of vanables gy = exp (£). 1 = oxp (ud. g 1 = exp (r —u) = exp (w) the above equation reduces

to
(- D'tk 40! d"'ﬁ)
ki de

exp k4 Dy exp [~ (A +¢) exp (w)] 0w «u) dw (B3)

_ ‘.' k+e)!
RETOT k!

where @O +1) = glexp e+ ). I we define

: Aoyt
dow) o ( I:') exp [(A + Daefexp | (K +¢) exp (w)]

we it prove that o, (w) e dtw) as & ~ ¢ where o) is the Drirae defta function. The teft-hand side of egn (BY)
theretore becomes the tunction () = o) in the case that & =« that is

) (- DA+ (A
@i Are! s

Suppose that @(w + ) can be expanded ina Taylor series about the point w,, namely

. k- (B4

=kt

. . deé .
@iw+u) = piw, +u)+ (w—=w,)+ (B3

Jr ',_“”,,,

1t the first term in the expansion is only retained. the following result is obtained after substitution of eqn (B3)
into eyn (B3), for any timte value of &

(-0t f , dhp
Py = It (\.\A ltl.\A

We can improve the above approximation it we substitute eyn (B3) into eqn (BY) and require the vanishing of
the integral that corresponds to the second term in the expansion of G +u) given by eqn (B3), that is

(B6)

TP A IN]

(w =y ) dw 2 0, (B

T

Sk e lep
J ( I:' exp {(k + Dw)exp [ = (5 +¢) exp (w)] ((l’lp

The evaluation for w, that is derived from egn (B7) is given by

Ctk+at!
W, = f Y exp [tk + Dw]exp [ =k +¢) exp (w)]w dw, (BX)

In accordance with Schapery's approximation we select & = 0. We then caleulite from eqn (BY) that
wo = —5=In(c), where 3 is Euler's constant. We are still left with the freedom to choose ¢, and one idea would
be to improve the accuracy of eyn (B6) by requiring the vanishing of the second moment resulting from the
second-order terms in the expansion of p(w +u). a condition that would fix ¢. We avoid this here however and
we select ¢ = exp (—7) so that w, becomes zero, with egn (B6) reducing to

SAS 23:1-¢
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<P(f) = ['s.(é(s)!gQ’ée\p( —ay e (89)

Another selection of ¢ implied by the long time asymptotic behavior of @(1) is given in Section 4.

APPENDIX C

The functions d\(n). ..., d(m) appearing in eqn (38) for the expression of the asymptotic behavior of the
loads p, along the fibers have the following explicit evaluations :

¥

dyim =y h,.,j cos (mf) cos () sin (0'2) d¥
i3

i}

v L
dofm) = 2ACU -2 ' [CU+2] ' § b,,,j cos (mb) cos (nf) sin® (0:2) do)
i)

Y@ v T
o (1) = 2 sin (xn) ) h,,,f cos (mth) cos (nfh) sin' (0/2) d0
xn ot 0
dy(n) = JE‘QM sin (am; 2)fcos (an/2) — | sin’ (an/2)) i b ) cos (mf) cos (nf) sin® (6/2) d0
ST draea)' - = LI TR X ‘ n=

v L]
dom = [[(1 =32 ' [M 0] Y h,,f cos (mid} cos (nth sin® (0/2) d1).
)

il



